
FURTHER APPLICATIONS OF CYCLIC VOLTAMMETRY WITH
SPHERICAL ELECTRODES

Marién M. MORENO1 and Angela MOLINA2,*
Departamento de Química Física, Facultad de Química, Universidad de Murcia,
Espinardo, Murcia 30100, Spain; e-mail: 1 mencarna@um.es, 2 amolina@um.es

Received May 21, 2004
Accepted July 28, 2004

In this work we show analytical and easily manageable explicit equations corresponding to
the application of any multipulse potential sequence to planar, spherical and cylindrical
electrodes. We apply these expressions to study reversible charge transfer electrode processes
in cyclic voltammetry with spherical electrodes, by considering that both members of the re-
dox pair are initially present in solution, and showing that a conventional symmetrical
sweep can be used under these conditions. These expressions allow study in depth funda-
mental aspects of cyclic voltammetry with spherical electrodes. Thus, in the cyclic
voltammograms obtained for simple reversible processes with conventional spherical elec-
trodes at different sweep rates, characteristic common points of non zero current (isopoints)
appear from which unknown thermodynamic parameters of these systems can be easily de-
termined. From these equations it can be predicted and demonstrated that there are impor-
tant analogies of the I/E behavior between a simple reversible charge transfer reaction and a
first-order catalytic process when any single or multipulse voltammetric transient techniques
are applied.
Keywords: Cyclic voltammetry; Spherical electrodes; Catalytic mechanism; Multipulse po-
tential sequence; Reversible charge transfer processes; Electrochemistry.

In this paper we present explicit and easily manageable equations corre-
sponding to a reversible charge transfer process (Er) based on previous re-
sults1,2. These equations are applicable to planar, spherical and cylindrical
electrodes and show that the current corresponding to any multipulse tech-
nique can be expressed as the sum of formally identical summands which
contain two factors, one dependent only on time and electrode geometry,
and the other dependent only on the surface concentrations. It is impor-
tant to highlight that this behavior is exclusive for Er processes2, multistep
reversible processes3 and first-order catalytic mechanism (ErC′)4,5. This is be-
cause in all these cases the surface concentrations are independent of time
and are only dependent on the potential of the actual pulse applied in pla-
nar, spherical, and cylindrical geometries.
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We will apply these equations to the study of the most commonly used
multipulse technique, cyclic voltammetry (CV), in the most general situa-
tion in which both members of the redox pair are initially present in solu-
tion, by using the usual symmetrical sweep instead of the awkward asym-
metrical sweep beginning at the equilibrium potential6–8. Our equations re-
veal that when conventional-size spherical electrodes are used in CV or cy-
clic staircase voltammetry (CSCV) techniques, the I/E curves obtained for
different sweep rates present one or two common points (isopoints) of non
zero current, depending on whether one or both electroactive species are
present in solution. The presence of these isopoints is of great interest in es-
tablishing completely the fundaments of CV technique, in order to describe
the ideal behavior of an Er process in spherical diffusion. However, these
points have never been characterized in the literature due, undoubtedly, to
the absence of analytical explicit equations.

The above theoretical predictions have been experimentally verified for
an Er process with the ferrioxalate system in a static mercury dropping elec-
trode (SMDE), and with solutions containing both members of the redox
pair Fe(CN)6

3–/Fe(CN)6
4– at a planar electrode.

We have also compared the analytical expressions corresponding to
voltammetric behavior of the Er and ErC′ mechanism, which indicate
clearly that both mechanisms present important analogies in transient
techniques. This is due to the fact that of all reaction mechanisms with
first-order chemical reactions coupled to a reversible charge transfer reac-
tion (i.e., ErC, CEr, ErCEr, CErC, ErC′, ...), the ErC′ mechanism4,5 is the only
one for which the expression of the current corresponding to any transient
multipulse technique presents an analytical form comparable to that
shown for the Er mechanism analyzed in this paper, independently of the
value of the equilibrium and rate constants of the homogeneous chemical
reaction.

EXPERIMENTAL

A computer-driven potentiostat-galvanostat was designed and constructed by QUICELTRON
(Spain). Pulse and waveform generation and data acquisition were performed using
i-SBXDD4 and DAS16-330i (ComputerBoards, U.S.A.) boards, respectively. All computer pro-
grams were written in our laboratory.

A three-electrode cell was employed in the experiments. A static mercury dropping elec-
trode and a Pt planar disk (r0 = 0.25 cm) served as working electrodes. The SMDE was con-
structed using a dropping mercury electrode EA 1019-1 (Metrohm) to which a home-made
valve was sealed. The electrode radius of the SMDE was determined by weighing a large
number of drops. The counter electrode was a Pt foil and the reference was a Ag|AgCl|KCl
1.0 M electrode.
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All reagents were of Merck analytical grade and were used without further purification.
Working solutions containing Fe(C2O4)3

3– were freshly prepared in order to avoid error from
photochemical reduction. Water was bidistilled and nitrogen gas was used for deaeration. In
all the experiments the temperature was kept constant at 25 ± 0.2 °C.

For the experimental curves shown in Fig. 2, the background current has been corrected
and the diffusion coefficient value used in theoretical adjustment, D = (4.6 ± 0.1) × 10–6 cm2/s,
was previously obtained from chronoamperometric experiments.

REVERSIBLE CHARGE TRANSFER REACTION (Er)

Let us consider a reversible charge transfer process, Er, when both oxidized
and reduced species, O and R, may be initially present in the electrolytic so-
lution with concentrations cO

* and cR
* , respectively.

For these conditions, it is possible to apply a general treatment for the
multipotential problem, with any value of diffusion coefficients in planar
diffusion (DO ≠ DR), and taking DA = DB in spherical and cylindrical diffu-
sion, based on the fact that for all the above cases, the surface concentra-
tions, c p

O,s and c p
R,s , corresponding to the application of an arbitrary se-

quence of consecutive potential steps, (designed by Ein = E1, E2, ..., Ep–l, Ep),
are only dependent on the potential applied in the last step, Ep, and hence
are independent of the previous history of the system1.

In this case, by generalizing the results of previous papers and by apply-
ing the superposition principle1,2, the current corresponding to the p-th
pulse for a planar electrode whose area increases with an arbitrary power of
time, A(t) = A0tz, or for spherical and even for cylindrical electrodes, can be
written in this general and elegant form

( )I nFA
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which contains p summands that are the product of two factors: (i) a func-
tion dependent on time and on the electrode geometry, F(tmp), and (ii) the
difference between surface concentrations of consecutive potential steps,
cm

O,s
−1 – cm

O,s , depending only on the potential as indicated in Table I.
The surface concentrations corresponding to any p-th pulse, c p

O,s and c p
R,s ,

are only dependent on the actual pulse potential applied, independently of
the diffusion field considered, and are given by
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for an expanding or static planar electrode, with
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for spherical or cylindrical electrodes when DO = DR = D, with
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Moreover, for m = 1 in Eq. (1), cm
O,s
−1 = cO,s

0 = cO
* correspond to the initial

concentrations (K0 = cO
* /cR

* depends on equilibrium potential Eeq = E0 = E0′ +
RT ln (cO

* /cR
* )/nF), and the time, tmp, is that elapsed between the beginning

of the application of the m-th potential step and the end of the application
of the p-th potential step

t tmp q
q m

p

=
=
∑ , (8)

where tq is the duration of any potential step, Eq.
From these equations it is possible to obtain the expression for the cur-

rent corresponding to any multipulse electrochemical technique, e.g., stair-
case voltammetry (SCV), cyclic staircase voltammetry, linear sweep voltam-
metry (LSV) and cyclic voltammetry. In this work we study the responses
corresponding to spherical electrodes of any radius, r0, including planar
(r0 → ∞) and ultramicrospherical (r0 → 0) electrodes.
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Cyclic Voltammetry

To apply the above equations to the multipulse techniques CSCV or CV we
must take into account that the applied perturbation E/t consists of a cyclic
stepped potential or a cyclic linear sweep potential, respectively. All the po-
tential steps have the same duration, t1 = t2 = ... = τ, and the same pulse am-
plitude, |∆E| = Ep+1 – Ep, with the scan being applied between the initial po-
tential, Ein = E1, and the reversal potential, Er, at which the direction sweep
is changed.

Thus, the classical dimensionless current is studied in the form9

ψ =
+
I

nFA c c aD

p

( )( )
,

* * /
O R

1 2
(9)

where Ip is the current at the end of the p-th step (see Eq. (1)) and the po-
tential sweep rate is defined as9

a
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By introducing Eqs (9)–(10) into Eq. (1), along with the FE r
(tmp) function

given by Eq. (3) in Table I, we deduce the dimensionless current in CSCV
and CV for spherical electrodes when both species are initially in solution

ψ
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This equation can be used in cyclic voltammetry by introducing the
condition |∆E| → 0. In general, very good results are obtained for values of
|∆E| < 0.01 mV 1,5. Under these conditions, the term containing the depend-
ence with the potential applied, cm

O,s
−1 – cm

O,s in Eq. (11), fulfils (see Eq. (7))
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where the double sign refers to the direction sweep, with the upper sign
corresponding to the cathodic sweep (∆E < 0) and the lower sign to the
anodic one (∆E > 0). Thus, by using the above mathematical identity in
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Eq. (11), it is possible to write in a new and more elegant form the current
obtained for reversible processes at spherical electrodes of any size

ψ ψ ψ= +planar radial (13)
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where t is the duration of experiment and

ψ radial
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ψ (Eqs (13)–(15)) is a very easily programmable expression which is valid for
any experimental conditions chosen, including any value of initial poten-
tial (Ein = E1), since its influence on the current when both species O and R
are initially in solution is clearly expressed by the first addend of Eq. (14).

Only One Species is Initially in the Solution

When only the oxidized species O is initially present (cR
* = 0) and the scan

starts at Ein >> E0′ (Kin = K1 → ∞), the expression for planar contribution,
ψplanar (Eq. (14)) coincides, for |∆E| < 10–2 mV , with the results calculated by
several authors in planar diffusion9,10. The excellent approximation for the
radial contribution, φ(σt), given by Reinmuth in Eq. (4) of lit.11, which was
used by Nicholson and Shain9, is only valid when there is no reduced spe-
cies R initially present12. In such case, the results obtained are practically
coincident with the ψradial given by Eq. (15) with cR

* = 0. Therefore, as long as
both species are initially present in the electrolytic solution, Eqs (13)–(15)
of this paper need to be used to calculate the current at spherical electrodes
of any radius, r0.

In Fig. 1 we have plotted the cyclic voltammograms corresponding to an
electrode of A =1.26 × 10–5 cm2 by using three values for the potential
sweep rate, v = 103, 102, and 10 mV/s . Figures 1a and 1b show the planar
(Iplanar, see Eqs (9) and (14)) and radial (Iradial, see Eqs (9) and (15)) contribu-
tions, respectively. Figure 1c corresponds to the real current that we would
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FIG. 1
I/(E – E0′) curves for a reversible process in CV. a Planar contribution, Eqs (9) and (14); b radial
contribution, Eqs (9) and (15); c spherical electrode, Eqs (9) and (13). A = 1.26 × 10–5 cm2, n = 1,
D = 10–5 cm2/s, T = 298.15 K, cR

* = 0, |∆E| = 0.01 mV. The values of v (in mV/s) are given in the
figure. The coordinates of the non zero current isopoint (Eiso – E0′, Iiso) are shown in Fig. 1c
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expect to obtain for a spherical electrode (I, see Eqs (9) and (13)). As can be
seen, planar and spherical curves (Figs 1a and 1c), present a common point
in the reverse branches of the I/E curves obtained at different sweep rate
values. This point has been previously described in the literature for planar
electrodes under the name of “isopoint”, as a point of zero current observed
for reversible kinetics13 (Fig. 1a).

It can be easily demonstrated that the current corresponding to this
point independent of sweep rate, is zero for planar electrodes, i.e., I iso

planar =
Iplanar(Eiso) = 0 (see Eqs (9) and (14) and also lit.13). For spherical electrodes
this isopoint also exists, but it corresponds to a non zero cathodic current
which is due solely to the radial contribution which is independent of the
sweep rate (see Fig. 1b), i.e., Iiso = Iradial(Eiso). In this case, the expression of
Iiso can be easily calculated by making I iso

planar = 0 . So, we deduce (see Eqs (9)
and (15))

I c
nFADc

r Kiso O
O

iso

( )
( )

,*
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+0 1

(16)

where, in accordance with definition (7),

K
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Thus, when conventional spherical electrodes are used, the formal poten-
tial can be easily determined from the above expression being given by

E E
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with Iiso(cO
* ) being the current measured at E = Eiso and Id,O(∞) is the hypo-

thetical steady state diffusion cathodic limiting current for a sphere of any
radius, given by14

I nFDr cd,O O( ) .*∞ = 4 0π (19)

To the best of our knowledge, this point has never been characterized in
the literature when spherical electrodes are used. However, it is of great in-
terest for establishing the basics of this technique since it confirms the ideal
behavior of a reversible charge transfer process, together with the cathodic
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peak potential, Epc, the separation between cathodic and anodic peaks,
∆Ep, etc.

Figure 2 shows the experimental (dotted lines) and theoretical (solid
lines) curves corresponding to CV with the system 1 mM FeCl3 in 0.25 M

K2C2O4 and pH 4.70 ± 0.05. The experimental currents were obtained by
applying several sweep rates to a spherical electrode of radius r0 = 0.014 cm.
The isopoint position has been determined by linear fitting of experimental
data close to the intercept point. The average values are Eiso = –279 ± 1 mV
and Iiso = 0.066 ± 0.001 µA , so the formal potential deduced by applying
Eq. (18) is E0′ = –235 ± 2 mV. The theoretical curves were constructed with
the data E0′ = –235 mV and D = 4.6 × 10–6 cm2/s (see Experimental). Both
values are in good agreement with those previously reported in the litera-
ture15,16 and, as can be seen, the agreement between theoretical and experi-
mental currents is very good.

The shape of the I/E curves obtained from the backward scan is affected
by the reversal potential value, Er, at which the direction sweep is
changed9,10,17. Thus, the usual parameters related to the anodic sweep
change with Er – like the separation between peaks, ∆Ep = Epa – Epc, and also
the new characterized isopoint (Eiso, Iiso) – but the isopoint remains a single
point even when reversal is made early. This isopoint of non zero current is
a universal characteristic of CV and CSCV curves obtained for reversible
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FIG. 2
Comparison between experimental (dotted lines) and theoretical (solid lines, Eqs (9) and
(13)–(15)) cyclic voltammograms for 1 mM Fe3+ in 0.25 M K2C2O4, pH 4.70 ± 0.05. r0 =
0.014 cm, D = 4.6 × 10–6 cm2/s, Eiso = –279 ± 1 mV, Iiso = 0.066 ± 0.001 µA. The values of v
(in mV/s) are given in the figure. Other conditions as in Fig. 1
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processes with spherical electrodes when the steady state has not been
reached. The current corresponding to this point is given by Eq. (16) and
therefore will be observable for any experimental conditions chosen, in-
cluding any values of initial and reversal potential, Ein and Er , as well as for
any value of pulse amplitude, |∆E|. This isopoint can also be found in
CSCV, and its current is also given by Eq. (16).

In Table II we have summarized the values of the isopotential, Eiso – E0′,
and the dimensionless isocurrent, Iiso/Id,O(∞), calculated for CV technique
by applying Eqs (13)–(15) with cR

* = 0, for different reversal potential values,
Er, with spherical electrodes and the equivalent parameters with planar
electrodes, (Eiso – E0′)planar and I iso

planar , for comparison. Note that Eiso – E0′ and
Iiso/Id,O(∞) are independent of electrode radius, r0, and sweep rate values, v,
and are only dependent on the reversal potential, Er. Table II shows, as
an example, the values obtained for the separation between anodic and
cathodic peaks, ∆Ep, in a spherical electrode with r0 = 0.01 cm, v = 100 mV/s
and D = 10–5 cm2/s ((D/r0

2a)1/2 = 0.1603). In these conditions, the cathodic
peak potential takes the value Epc – E0′ = –36.4 mV ((Epc – E0′)planar = –28.5 mV
for a planar electrode). ∆Ep decreases when the reversal potential, Er, be-
comes more negative, in such a way that the anodic peak shifts towards an-
odic potentials, as occurs in planar diffusion9,10,17. When the radius de-

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

Cyclic Voltammetry with Spherical Electrodes 143

TABLE II
Influence of the reversal potential (Er – E0′) on the coordinates of isopoints (Eiso – E0′,
Iiso/Id,O(∞)) (Eqs (23)–(25) with Ein – E0′ = –300 mV and |∆E| = 10–6 mV) and on the
separation between peaks for a spherical electrode, ∆Ep, ((D/r0

2a)1/2 = 0.1603, r0 = 0.01 cm,
v = 100 mV/s) and for a planar electrode, ∆Ep

planar. The positions obtained for cathodic peaks
are Epc – E0′ = –36.4 mV and (Epc – E0′)planar = –28.5 mV. Others conditions as in Fig. 1

Er – E0′

mV

Eiso – E0′ = (Eiso
planar – E0′)

mV

Iiso/Id(∞) I iso
planar ∆Epeak

mV

∆Epeak
planar

mV

–100 –28.1 0.7488 0.0 76.2 60.2

–150 –36.5 0.8052 0.0 74.7 58.8

–200 –41.9 0.8363 0.0 74.0 58.2

–250 –45.9 0.8564 0.0 73.7 57.8

–300 –49.0 0.8707 0.0 73.5 57.6

–∞ –73.5 0.9459 0.0 72.8 57.1

These data have been calculated taking |∆E| = 10–6 mV, although with |∆E| = 10–2 mV rela-
tive errors of less than ±1% in the peak currents and deviations of less than ±0.5 mV in the
peak potentials are found.



creases, the ∆Ep difference increases, except for ultramicroelectrodes for
which both peaks disappear. Hence, ∆Ep always takes greater values for con-
ventional spherical electrodes than for planar electrodes.

Influence of the Presence of Reaction Product

In the literature when both species are initially in solution, the CV tech-
nique has only been applied with planar electrodes in an unusual and
unnecessary way, beginning the scan at the equilibrium potential Ein = Eeq
(Kin = K0, Eq. (7))6–8 and moving the potential applied towards cathodic or
anodic values7. However, all equations given in this paper are general ex-
pressions which, as well as being valid for planar and spherical electrodes
of any radius, including microelectrodes, can also be used for any value of
initial potential, Ein, different from Eeq, i.e., for conditions of non zero ini-
tial current.

Figure 3 shows the cyclic voltammograms obtained for a spherical elec-
trode of radius r0 = 0.01 cm, when applying Eqs (13)–(15) with several values
of the relation between initial concentrations of the redox pair, cR

* /( )* *c cO R+ . In
Fig. 3a the cathodic sweep starts at Ein = Eeq and continues up to Er = Eeq –
15RT/(nF), whereas the anodic sweep ends at a much more positive poten-
tial value than Eeq in such a way that the whole sweep is asymmetrical7,8.

If the usual symmetric sweep starts at sufficient positive potentials (Ein =
(E0′ + 400) mV), the oxidation reaction takes place and an anodic current
is obtained at the beginning of experiment, as is shown in the curves of
Fig. 3b. This initial current value, ψ in

a , can be easily deduced from Eqs (13)–
(15). So, if Ein >> E0′, ψ in

a is given by

ψ
πin

a R

O R

=
−
+







 +

c

c c
RT

nF E t
D

r

*

* *

/

/

/

( ) | | ( )∆

1 2

1 2

1 2

0

1







. (20)

If the sweep starts at very negative potentials, Ein << E0′,ψ in
c takes the form

ψ
πin

c O

O R

=
+







 +

c

c c
RT

nF E t
D

r

*

* *

/

/

/

( ) | | ( )∆

1 2

1 2

1 2

0

1







. (21)

Note that in these conditions the initial current in CV tends to minus in-
finity or to infinity at the beginning of the experiment, while in CSCV it
takes a constant value5. As expected, in Figs 3a and 3b it can be observed
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how the cathodic peak current diminishes and the anodic peak current in-
creases when the ratio cR

* /( )* *c cO R+ increases. This effect is more pronounced
when the electrode radius decreases.
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FIG. 3
Influence of cR

* /( )* *c cO R+ on the dimensionless cyclic voltammograms for a spherical electrode,
ψCV (Eqs (13)–(15)). a Asymmetrical sweep, Ein = Eeq, Er = Eeq – (15RT/nF); b symmetrical
sweep, Ein = (E0′ + 400) mV, Er = (E0′ – 400) mV. r0 = 0.01 cm, v = 100 mV/s. The values of cR

* /
( )* *c cO R+ are given in the figure. Other conditions as in Fig. 1
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Figure 4a shows the influence of sweep rate on the cyclic voltammograms
obtained when both members of the redox pair are initially present with
cO

* = cR
* and beginning the scan in the negative direction from Ein = Eeq. As

can be seen, an isopoint appears in the reversal branch of these curves, just
as in the case described above when only species O is initially present.
However, the relation between Iiso and Eiso is now given by
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FIG. 4
Influence of sweep rate on the cyclic voltammograms for a spherical electrode, ICV (Eqs (9) and
(13)–(15)), when both species are initially present with cO

* = cR
* (cB

* /c* = 0.5). a Asymmetrical
sweep, one isopoint; b symmetrical sweep, two isopoints. The values of v (in mV/s) are given
in the figure. Others conditions as in Fig. 6
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I
nFAD

r

c K c

Kiso
O iso R

iso

=
−
+0 1

* *

. (22)

In these conditions, we find for the formal potential the following ex-
pression

E E
RT
nF

I I

I I
′ = −

∞ −

− ∞











0
iso

d,O iso

iso d,R

ln
( )

( )
, (23)

where Id,O(∞) corresponds to the limiting cathodic current given by Eq. (21)
and Id,R(∞) is the limiting anodic current given by

I nFDr cd,R R( ) .*∞ = −4 0π (24)

If Ein is very positive (Ein = (Eeq + 400) mV in Fig. 4b), two intercept points
(isopoints) of non zero currents are observed in spherical diffusion, (Eiso,1,
Iiso,1) and (Eiso,2, Iiso,2). For each of these points Eq. (22) is fulfilled, so we
can obtain, for example, E0′ and D by applying any numerical method to
solve this system of two equations.

Evidently, two isopoints, both with zero current, are also observed for
planar diffusion. This behavior has been experimentally verified in Fig. 5.
which shows the experimental voltammograms obtained with different
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FIG. 5
Experimental cyclic voltammograms obtained for 0.5 mM Fe(CN)6

3–/0.5 mM Fe(CN)6
4– in 0.5

M KCl with a Pt disk of r0 = 0.25 cm. The isopoints have been localized at Eiso,1 = 167 ± 1 mV, Eiso,2 =
285 ± 1 mV, I iso,1

planar = I iso,2
planar = 0.0. The values of v (in mV/s) are given in the figure
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sweep rates for the Fe(CN)6
3–/Fe(CN)6

4– system when both species are ini-
tially in solution with equal concentrations, cO

* = cR
* = 0.5 mmol/l. The po-

tential range at which this system is electroactive is incompatible with the
use of a SMDE, so a large Pt disk electrode has been used in order to mini-
mize edge effects, and two isopoints of zero current are observed. The sym-
metric scan was started at sufficiently positive potentials (Ein = –100 mV),
so initial oxidation currents given by Eq. (20) are also observed.

FIRST-ORDER CATALYTIC MECHANISM (ERC′). COMPARISON WITH A REVERSIBLE E
PROCESS (Er)

The simplest scheme for the ErC′ mechanism can be written by

O + n e– R

R O

Of all the reaction mechanisms with first-order chemical reactions cou-
pled to the reversible charge transfer reaction (i.e., ErC, CEr, ErCEr, CErC,
ErC′, ...), ErC′ is the only mechanism that presents clear analogies with the
Er mechanism analyzed in this paper. These analogies are observed in
voltammetric transient techniques for any value of the equilibrium and rate
constant of the homogeneous chemical reaction. This behavior which, as
far as we know, has not been discussed in depth in the literature, is due to
the fact that the ErC′ mechanism is the only mechanism for which the sur-
face concentrations of electroactive species are independent of time for any
pulse potential applied, as has been recently shown in lit.4,5. This makes it
possible to write for the current corresponding to any p-th pulse for the ErC′
mechanism in spherical diffusion in a mode formally similar to that corre-
sponding to an Er process (Eq. (1)). So, by a generalization of the results
shown in lit.4,5 for any p-th potential step we find

( )I nFA
D

F t c cp
mp

m m

m

p

E C
O

E C O,s O,sr r′ ′
−

=

= 





−∑π

1 2
1

1

/

( ) , (25)

where

[ ]F t
t

k k kmp

k k t

mp

mp

E Cr

e
erf′

− +

= + + +( )
( )

( ) (
( )

/

/
1 2

1 2 1 2

1 2

1π [ ]k t
D
rmp2

1 2 1 2

0

)
( )/ /

+ π
(26)
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and c cm m
O,s O,s
− −1 has an identical form to that previously obtained for an Er

process, given by Eq. (7) in Table I. However, in all the other previously
mentioned mechanisms, the surface concentrations are dependent on time
for the first pulse and subsequent potential pulses4, and therefore the super-
position principle cannot be applied and an analytical simple expression
for the current corresponding to a given pulse p, Ip, cannot be expected.

By comparing Eq. (1) for the Er process and Eq. (25) for the ErC′ mecha-
nism, it is clear that the dependence of the current on the applied potential
is identical in both mechanisms, and only appears through the surface con-
centrations. This behavior implies the following:

1) For simple pulse techniques, i.e. when the sums of Eqs (25) and (1) disap-
pear and only one addend (p = 1) remains, the responses I E Cr ′ /E and I E r

/E are
given by

I nFA
D

F t
c K c

KE C
O

E C
O 1 R

1
r r′ ′= 



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−
+π

1 2

1

/ * *

( ) (27)

and

I nFA
D

F t
c K c

KE
O

E
O 1 R

1
r r
= 



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−
+π

1 2

1

/ * *

( ) (28)

with FE Cr ′ (t) given by Eq. (26) and FE r
(t) given by Eq. (3) in Table I. Note

that the only factor dependent on the applied potential for this first pulse
has the same expression in both mechanisms, although for the ErC′ mecha-
nism this factor can also be expressed as a function of the chemical equilib-
rium constant, Keq = cR

* /cO
* = k2/k1, since

c K c

K

K K c c

K K
O 1 R

1

eq O R

eq

* * * *( )( )

( )( )
.

−
+

=
− +
− +1

1

1 1
1

1

(29)

This separability of the time–kinetic–geometric influence, FE Cr ′ (t), and the
potential influence implies that for planar or spherical electrodes of any
size, the I E Cr ′ response fulfils, for any value of time of the experiment and
of the homogeneous rate constants, Eq. (30)

E E
RT
nF

I I

I I
= +

−

−
′ ′ ′

′ ′

0 ln E C
lc

E C

E C E C
la

r r

r r

(30)
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with I E Cr ′ given in Eq. (27), and the cathodic and anodic limit currents, I E C
lc

r ′

and I E C
la

r ′ , are

I
nFA c c

K

D
F tE C
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O
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+
+
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and
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− +
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* * /

1

1 2

π
(32)

Therefore, it is clear that the I/E dependence for an ErC′ process (Eq. (30)) is
identical to that shown for an Er process12,17.

2) In DPV technique two consecutive potentials, EI and EII, are applied to
the working electrode, and the response is constructed by plotting the dif-
ference ∆I = III – II versus EI (lit.18–20). In this technique, the influence of the
first potential step in ∆I practically disappears due to t1 >> t2, and the ex-
pressions ∆I E Cr ′ /E and ∆I E r

/E show also the same dependence with the ap-
plied potential EII (EII – EI = ∆E = constant). Both fulfil Eqs (33) and (34) for
a spherical electrode of any size and for any value of the rate constants

∆I nFA c c
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and

∆I nFA c c
D

F t
K KE O R

O
Er r

= + 
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

( ) ( )* *

/

π

1 2

2
2 1

1
1

1
1



 (34)

in such a way that, although the current peaks are evidently different in both
mechanisms, the potential peaks are in both cases Ep = E0′ ± |∆E|/2 (lit.21,22),
independently of the radius of the electrode.

3) In the particular case for CV technique, a comparison between Eqs (25)
and (26), and Eqs (1) and (3) in Table I clearly shows that the behavior of
the ErC′ process cannot be expected to be similar to that shown by an Er
outside the stationary state (i.e., for (k1 + k2)tmp < 2.0). However, if we take
into account that for an ErC′ process the influence of the electrode radius
on F t mpE Cr ′ ( ), as in an Er process, corresponds only to an addend independ-
ent of time, the terms dependent on r0 in Eqs (25) and (26) cancel out in
such a way that, taking into account Eq. (9), the dimensionless ψ E Cr ′ , can be
rewritten as5
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FIG. 6
Influence of the rate constant, k1, on the dimensionless cyclic voltammograms obtained for a
catalytic process. a Planar contribution, Eq. (36); b radial contribution, Eq. (37); c spherical
electrode, Eq. (35). Keq = 0. The values of k1 (in s–1) are given in the figure. Others conditions
as in Fig. 1
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and F t mpE C
planar

r ′ ( ) is given by Eq. (26) with r0 → ∞.
This result implies that there is a total analogy between the influence of

the electrode radius on the response in an Er and in an ErC′ process, i.e., the
radial contribution depends only on the potential applied to the last pulse
and is independent of sweep rate, v.

Figure 6 shows the effect of rate constants, k1 + k2, on the curves corre-
sponding to planar (Fig. 6a) and radial contributions (Fig. 6b), as well as on
the response in a conventional spherical electrode (Fig. 6c) for an ErC′
mechanism with Keq = 0. Figure 6a shows that the planar contribution is
the only one that depends on the kinetic constants of the chemical reac-
tion, and so we can observe how the curve with k1 + k2 = 10 s–1 has already
reached the kinetic steady state. Figure 6b corresponds to the radial contri-
bution, which, being identical to that of an Er process (cf. Figs 6b and 1b as
well as Eqs (15) and (37)), is independent of kinetic parameters, as has been
mentioned above. This contribution would be the only one observed when
an ultramicrohemispherical electrode is used, since in this extreme case the
microgeometrical steady state is reached5 and therefore no kinetic influence
is observed. Figure 6c shows the real CV response obtained in this conven-
tional spherical electrode (Eq. (35)). This behavior implies that when the
ErC′ mechanism is analyzed, it is not convenient to use spherical electrodes
of small size since the kinetic influence decreases as the electrode radius de-
creases, independently of whether the kinetic steady state has been reached
or not (see Fig. 6c).
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